Bio-Station

Bio-Stationは日々進歩する生命科学に関する知見を、整理、発信する生物系ポータルサイト、を目指します。

自己と非自己を分ける免疫のメカニズム

はじめに

昨今、がん・アレルギー患者や新興感染症の感染者数は増加の一途をたどり、社会的にも免疫学への関心が高まっています。そもそも免疫は、「自分を攻撃せず」、外敵を攻撃するというシステムです。免疫が自己に対して攻撃しないことを免疫寛容といい、免疫寛容はわれわれが生まれた後に一人ひとりが自分でつくり上げています。しかしながら、この免疫寛容がどのように成立しているのか、よく分かっていません。

 

本研究は、「免疫寛容はどのように出来上がるのか」という問いを発端にすすめられました。

 

f:id:Jugem:20200709182151p:plain

今回紹介する論文

免疫寛容の研究について歴史をひもとくと、1960年のノーベル生理学・医学賞の、ピーター・メダワー博士とマクフラーレン・バーネット博士の「後天的自己免疫寛容」の発見に遡ります。

 

メダワー博士は、移植を行う際に、生後間もない状態で他人の組織を移植すると生着するのに対し、生後しばらく経ってから移植をした場合、拒絶反応が起こることを示し、この現象を後天的自己免疫寛容と命名しました。

 

バーネット博士は、一連の免疫応答はリンパ球が中心となって行われており、あらかじめ自己に反応するリンパ球は除去される一方で、「多種多様な病原体を認識する受容体をもつリンパ球が用意されることで、新奇の病原体にでも免疫応答できるシステムが成り立っている」というクローン選択説を提唱しました。

 

その後、多くの免疫学者により、バーネット博士によるクローン選択説を参考に研究がすすめられ、およそ半世紀をかけ、おおむねバーネット博士のクローン選択説は正しいことが証明されました。

 

すなわち、我々は生まれた後、リンパ球が個人個人でDNA組換えにより多様な抗原受容体を創り上げ、「自己に反応する成分はあらかじめ除去されることで、それ以外の成分を外敵として反応する」という、獲得免疫システムの基本メカニズムを説明することが可能となりました。

 

しかしながら、多様な抗原受容体の中から自己に反応する受容体だけをどのように除去するのかについては、いまでもまだよく分かっておらず、現在、免疫学で最もホットな研究テーマの一つとなっています。

 

_________________________________

 

脊椎動物は獲得免疫システムと呼ばれる生体防御機構を所持しており、Tリンパ球は獲得免疫システムの中心を担う重要な細胞集団です。すべてのTリンパ球は胸腺と呼ばれるリンパ組織で出来あがり、胸腺内でTリンパ球は、DNA組換えにより10の15乗もの種類の抗原受容体を創り出しています。

 

しかし、この時に問題となるのが、自己反応性のTリンパ球が創り上げられてしまうことです。この問題を避けるために、胸腺内で自己反応性Tリンパ球は、細胞死が誘導されることで、自己免疫疾患に陥ることを回避しています

 

この現象は免疫学の教科書において負の選択と呼ばれています。しかし、胸腺でどのように自己応答性のTリンパ球が除去されるのか、その分子メカニズムは不明な点が多いです。

 

ことの発端は2001年、胸腺の髄質上皮細胞(medullary thymic epithelial cell; mTEC)は、末梢組織に発現して機能しているはずの遺伝子をタンパク質として発現させていることが示されました(Jenkins et al., Nat. Immunology, 2001)。その後、様々なグループの研究により、われわれのすべての遺伝子は、mTECで自己抗原として発現している可能性が示されました(Samson et al., Genome Res. 2014)。

 

例えば、インスリン膵臓で血糖値を下げるために機能していますが、インスリンはmTECでも発現しており、インスリンに対する自己応答性Tリンパ球が胸腺内で除去されることで、1型糖尿病の発症が未然に防がれています。

 

これまでに、mTECでの自己抗原発現に関わる転写制御因子としてAireが報告されていました(Anderson et al., Science 2002)。実際、Aire遺伝子に変異をもつマウスは自己免疫症状を示します。また、ヒトの場合でも、APECEDと呼ばれる自己免疫疾患になります。しかしながら、AireのみではmTECのすべての自己抗原は制御されていないことが次々と報告されていました。

 

2015年、今回紹介する論文と同じ東大のグループにより、Aire以外の自己抗原遺伝子を制御する重要なタンパク質として転写因子Fezf2が同定され、AireとFezf2は、それぞれ独自にからだ中の遺伝子を発現させている可能性が示されました(Takaba et al., Cell., 2015)。

 

しかし、mTECのFezf2とAireはどのように多種多様な遺伝子を自己抗原として発現させているのか、その発現機構の違いは分かっていませんでした。

 

AireとFezf2はそれぞれ異なる自己抗原遺伝子の発現を制御する

そこでまず、Fezf2とAire間の転写制御プログラムの違いを明らかにするため、野生型マウスとFezf2欠損、またはAire欠損マウスのmTECをフローサイトメトリーにより分取し、RNA-sequencing解析を行いました。

 

その結果、Fezf2とAireは、それぞれ異なる遺伝子群を発現制御していることが明らかとなりました。また、Aireは主に遺伝子の発現誘導に関わるのに対し、Fezf2は発現誘導のみならず、抑制にも関わっていました。興味深いことに、Fezf2により抑制されている遺伝子の中には、多くのがん抗原が含まれていました。

 

このRNA-seqデータの結果をもとに、1細胞レベルでのmTECでのAire依存的遺伝子とFezf2依存的遺伝子のmRNAの発現パターンの特徴を解析しました。すると、Aire依存的な遺伝子は、全体のmTEC細胞集団の中の5%未満の細胞集団を単位として遺伝子発現が誘導されており、一定の組み合わせをもちAire依存的遺伝子を発現させていることが解りました(モザイクな発現パターン)。一方で、Fezf2はmTEC全体でFezf2依存的な遺伝子を発現誘導させていることが明らかとなりました(ブロードな発現パターン)。

 

             

次に、Fezf2とAireによる遺伝子発現機構を分子レベルで明らかにするために、クロマチン免疫沈降シーケンシング(ChIP-seq)解析とATAC-seq (Assay for transposase-accessible chromatin using sequencing)解析を行った結果、Fezf2依存的遺伝子は転写開始地点(TSS;transcriptional start site)付近がオープンクロマチン状態であり、Aire依存的遺伝子はクローズドクロマチン状態であることが解りました。以上の結果から、Fezf2とAire は転写や翻訳に至る以前のエピジェネティックな段階から、遺伝子の発現制御メカニズムがまったく異なることが明らかとなりました。

 

Fezf2はChd4と複合体を形成し、自己抗原遺伝子を発現させる

では、Fezf2とAireは、それぞれどのような転写制御機構をもっているのでしょうか?これまでに、Aireは、DNAトポイソメラーゼTopやブロモドメイン含有タンパク質Brd4といったさまざまな転写制御因子と相互作用することで、遺伝子を誘導させていることが明らかとなっていました(Bansal et al., Nat. Immunology, 2017)。

 

一方で、Fezf2はこれまで相互作用する因子群は報告がありませんでした。そこで、Fezf2タンパク質に対して共役免疫沈降と質量分析解析を行うことで、Fezf2と相互作用するタンパク質をスクリーニングすることを行いました。実際には、ヒト腎癌上皮細胞株の293T細胞とマウス胸腺髄質上皮細胞株の1C6を使用し、それぞれFezf2を過剰発現させ、質量分析により検出されたタンパク質の中で、もっともFezf2との結合に信頼性の高い候補タンパク質として、クロマチン制御因子Chd4(Chromodomain helicase DNA binding protein 4)が挙がってきました。

 

Chd4はクロマチンの構成やヌクレオソームの位置決定に関わる制御因子として報告されています。Chd4は様々な細胞で、エピジェネティックな発現制御をしていることが明らかとなっていました。免疫沈降法を用いて、mTECのFezf2とChd4は直接的に結合する一方で、AireとChd4は結合しないことが解りました。また、Fezf2-Chd4複合体は、NuRD (Nucleosome remodeling and deacetylase) と相互作用し、Fezf2依存的な遺伝子を発現制御している可能性が示されました。

 

実際にマウス胸腺において、Chd4がmTECで機能しているかどうかを明らかにするため、胸腺上皮細胞特異的なChd4欠損(cKO; conditional knock-out)マウスを樹立しました。Chd4 cKOマウスではAireとFez2遺伝子の発現が低下していないことが示されました。

 

次にChd4とFezf2のエピジェネティックな制御機構を明らかにするために、野生型とFezf2 cKO、Chd4 cKOマウスのmTECを用いることでATAC-seq解析を行った結果、Chd4とFezf2は協調的に同じ領域、とくにプロモーター領域のクロマチン状態を制御していることが明らかとなりました。

 

Fezf2に対するChIP-seq解析の結果からも、Fezf2はプロモーター領域周辺に位置していることが確認されました。以上の結果から、Fezf2はChd4と協調して特定の遺伝子をプロモーター領域周辺で直接的に遺伝子発現を制御していることが明らかとなりました。

 

 

Chd4はAire依存的な自己抗原遺伝子の発現にも関わる

以上のATAC-seqとRNA-seq解析の結果から、Fezf2によって制御されるChd4依存的遺伝子は全体の一部であることが判りましたが、残りのChd4依存的遺伝子の発現制御機構は不明でした。しかし、Chd4依存的かつFezf2非依存的な遺伝子リストの中に、Aire依存的な遺伝子が見いだされたことにより、Chd4依存的な遺伝子の発現制御にAireが関与している可能性が示されました。

 

過去の文献より、mTECのAireはゲノム上のスーパーエンハンサーと呼ばれる制御領域を介してTRAを発現誘導させている可能性が示されていました(Bansal et al., Nat. Immunology, 2017)。そこで、mTECのスーパーエンハンサー領域のATAC-seq解析を行うと、Chd4を欠損するmTECではスーパーエンハンサーのクロマチンアクセシビリティが下がっていました。この結果から、Chd4はスーパーエンハンサーを介して、Aire依存的な遺伝子の発現を制御している可能性が示されました。さらに、1細胞RNA-seqデータを活用し、スーパーエンハンサー近傍遺伝子とAire依存的な遺伝子の共発現パターンを調べた結果、スーパーエンハンサー近傍遺伝子とAire依存的な遺伝子に共発現クラスターが複数同定されました。同様の解析をChd4依存的な遺伝子についても行った結果、こちらでもスーパーエンハンサー近傍遺伝子とChd4依存的な遺伝子を含む共発現クラスターが同定されました。以上の結果をまとめると、Chd4はAireと協調してスーパーエンハンサーを介した遺伝子発現にも関与していることが明らかとなりました。

 

胸腺上皮細胞のChd4は免疫寛容を誘導する

最後に、Chd4の免疫寛容に関する寄与を調べるため、Chd4 cKOマウスの末梢臓器を調べました。するとChd4 cKOマウスは、Tリンパ球を含んだ炎症性細胞の浸潤が、唾液腺、腎臓、肺、肝臓などの末梢組織で見いだされ、Chd4 cKOマウスの血中より自己抗体産生が検出されました。以上の結果から、胸腺上皮細胞のChd4がTリンパ球の免疫寛容と自己免疫抑制に重要なタンパク質であることが示されました。

 

 

まとめ

転写因子Fezf2と相互作用するタンパク質をスクリーニングし、Fezf2と相互作用するクロマチン制御因子Chd4を同定しました。

 

胸腺髄質上皮細胞のChd4は、転写制御因子AireとFezf2の双方に働きかける重要なタンパク質であり、多種多様な遺伝子を胸腺で異所的に自己抗原として発現させ、自己免疫を抑制していることが明らかとなりました。

 

以上の結果は、自己と非自己の識別の根源となる免疫寛容の分子基盤の理解を飛躍的に向上させたと考えられます。

 

リンク 

https://www.amed.go.jp/news/release_20200630-02.html